Prepare parameters setup for iSC.MEB model fitting.

model_set_iSCMEB(
  Sigma_equal = FALSE,
  Sigma_diag = TRUE,
  int.model = "EEE",
  beta_grid = seq(0, 5, by = 0.2),
  coreNum = 1,
  maxIter_ICM = 6,
  maxIter = 25,
  epsLogLik = 1e-05,
  verbose = TRUE,
  seed = 1,
  init.start = 1,
  c_penalty = 1
)

Arguments

Sigma_equal

a logical value, whether set the mixture covariance matrices equal, default as FALSE.

Sigma_diag

a logical value, whether set the mixture covariance matrices diagonal, default as TRUE.

int.model

an optional string, specify which Gaussian mixture model is used in evaluting the initial values for DR-SC, default as "EEE"; and see Mclust for more models' names.

beta_grid

a numeric vector, specify the smoothness parameter of Random Markov Field. The default is seq(0.2,4,0.2).

coreNum

an integer value to decide how many cores are used to run in parallel, default as 5.

maxIter_ICM

the maximum iteration of ICM step, default as 6.

maxIter

the maximum iteration of ICM-EM algorithm. The default is 25

epsLogLik

an optional positive vlaue, tolerance vlaue of relative variation rate of the observed pseudo log-loglikelihood value, defualt as '1e-5'.

verbose

a logical value, whether output the information in iteration.

seed

a postive integer, the random seed to be set.

init.start

a positive integer, the number of times to compute initial values.

c_penalty

a positive real, the penalty constant used in modified BIC to determine the number of clusters.

Examples

model_set_iSCMEB(Sigma_equal=TRUE, coreNum=5)
#> $Sigma_equal
#> [1] TRUE
#> 
#> $Sigma_diag
#> [1] TRUE
#> 
#> $beta_grid
#>  [1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
#> [20] 3.8 4.0 4.2 4.4 4.6 4.8 5.0
#> 
#> $maxIter_ICM
#> [1] 6
#> 
#> $maxIter
#> [1] 25
#> 
#> $epsLogLik
#> [1] 1e-05
#> 
#> $int.model
#> [1] "EEE"
#> 
#> $init.start
#> [1] 1
#> 
#> $coreNum
#> [1] 5
#> 
#> $verbose
#> [1] TRUE
#> 
#> $seed
#> [1] 1
#> 
#> $c_penalty
#> [1] 1
#>